Main Proposal | Appendix | Addenda A-D | Documents Menu
SECTION A - ANOMALOUS BEHAVIOR OF MASSIVE HIGH-K DIELECTRICS:I - General Description.
II - Investigation of the Biefeld-Brown Effect
(a) Basic pendulum experimentIII - Variations of K with electrostatic potential and/or gravitational potential
1. Effects of mass(b) Series-capacitor experiments:
2. Effects of K in fluid media
3. High vacuum tests
4. Mathematical relationships involved, derivation of equation
1. Effects of mass(c) Variations of ponderomotive forces with time:
2. Effects of K in internal dielectric
3. Effects of K in external fluid dielectric
4. External electrostatic forces
5. Effects of shielding
1. Studies of possible causes
2. Design of continuous recording instrument
(a) Studies of hypothesis; mathematical relationships involved.IV - Studies of massive high-K dielectrics(b) Implications of effect of electrostatic potential and gravitational potential upon:
1. speed of light(c) Measurement of change in potential difference in capacitors with change in electrostatic potential and/or gravitational potential
2. rates of nuclear fission
(d) Studies looking toward a possible corresponding change in (w) with electrostatic potential and/or gravitational potential
(a) Theory of dielectrics, sources of polarizationV - Analysis of Electrified Disc-airfoils(b) Detailed examination of titanium oxide, barium titanate, lithium thallium tartrate - looking toward increasing values of K
(c) Measurement of ponderomotive forces developed by series capacitors containing high-K dielectrics:
1. With applied potential in steady state(d) Potential differences developed in polarized materials with change in over-all electrostatic potential
2. With changing potential
3. Effects of varying rate-of-change
1. Effects of mass(e) Stability of electrets:
2. Effects of K
1. Anomalous rates of voltage decay
2. Diurnal variations
(a) Theoretical considerations(b) Thrust measurements:
1. In air at reduced pressure
2. In hard vacuum
3. In fluid dielectrics of various K
4. Effects of viscosity of fluid dielectrics
SECTION B - ELECTROGRAVITIC INDUCTIVE EFFECTS:I - General Description
II - Investigation of the Fernando Sanford Effect
(a) Repeat experimentsIII - Studies of Potential Variations
(b) Series-capacitor experiments
(c) Theoretical considerations
(a) In large insulated massesIV - Studies of Voltage Gradients in Dielectric Materials
(b) Effects of mass
(c) In capacitors
(d) Electrical potential vs. gravitational potential
(e) The mountain effect
(f) Centrifugal potential effects
(a) Long-series capacitorsV - Polar Capacitors
(b) Effects of mass
(c) Directional gravitational effects
(a) Shift of potential of the mid-pointVI - Short-period Gravity Meter
(b) Directional effects
(c) Effects of elevation from earth
(d) Tests below earth surface
(a) Design and ConstructionREFERENCE:
(b) Detection of gravitational waves
Terrestrial Electricity, Fernando Sanford, Professor Emeritus of Physics - Stanford University. Stanford University Press.
SECTION C - DETERMINATIONS OF TIDAL EFFECTS ON BROWN DIFFERENTIAL ELECTROMETERI - General Description
II - Analysis of Zanesville and Philadelphia observations
(a) Solar componentIII - Analysis of California observations
(b) Sidereal component
(c) Lunar components, correlations with:
1. Lunar hour angle(d) Studies of combined effects
2. Angular distance, phase
3. Distance from earth
4. Altitude of moon
5. Right ascension of moon
(e) Detailed comparison of Zanesville and Philadelphia observations
(f) Comparison with simple tidal curves:
1. Ocean tides(g) Secular changes
2. Atmospheric tides, barometric (Maris effect)
(h) Correlation with other natural variables
(a) Secular changesIV - Analysis of Fernando Sanford Records
(b) Solar, lunar and Sidereal components
(c) 75th meridian and 120th meridian observations
(d) Regional vs world-wide variations
(e) Local variations
(f) Correlation with other factors
(a) Solar, lunar and sidereal componentsV - Analysis of Section A electrometer observations (Current Program)
(b) Comparison with Zanesville and Philadelphia records
(c) Comparison with atmospheric electric gradient and earth current records
(a) Studies related to gravitational and electrical variablesVI - Analysis of Section D thermoactivity observations (Current Program)
(b) Secular changes
(c) Comparison with former records
(a) Diurnal variations
(b) Secular changes
(c) Comparison with Section V records
SECTION D - GRAVITATIONAL ISOTOPESI - Investigation of the Charles Francis Brush Effects
(a) Impairment of gravitational acceleration:II - Studies of Gravitational Isotopes as Distinguished from Mass Isotopes
1. In complex silicates, lavas and clays(b) Persistent generation of heat:
2. In barium aluminate, barium titanate and other high-K materials
1. Calorimetric analysis(c) Correlations between (a) and (b)
2. Mass effect, particle size
3. Diurnal variations
(a) DefinitionsIII - Beneficiation of Gravitational Isotopes
(b) Theoretical considerations
(c) Gravitational periodic table of the elements:
1. Specific gravities with positive and negative anomalies(d) Spontaneous evolution of heat:
2. The Lanthanide contraction
3. Parallels between the lanthanide and actinide series of elements
1. Parallels between thermoactivity and radioactivity(e) Determination of origin of energy:
2. Decay of thermoactivity, increase of gravitational mass, computations of half-life
3. Exponential increase in thermoactivity with total (localized) mass
4. Possibilities of "critical mass" effects
1. Unstable electron shells
2. Dirac "holes"
3. Possibilities of negative mass. Lofting properties
4. Effects of electric and magnetic fields
5. Effects of changes in electric and/or gravitational potential
6. Diurnal and secular variations in thermoactivity and/or weight
(a) Occurrence in nature:IV - Possible Uses of Gravitational Isotopes
1. In all elements(b) Nascent gravitational isotopes:
2. In rare-earth elements
3. In special cases
1. Enrichment following chemical or nuclear reactions(c) Methods of beneficiation:
2. Presence in reaction products of nuclear reactors
3. Breeder technique
1. Settling and centrifuging
2. Settling and thermal diffusion
(a) Super-light (and super-heavy) fractions for:REFERENCES:1. Materials of construction (alloys)(b) Contra-terrene (negative gravitational mass) possibilities as (fixed lift) lofting agents:
2. Sensitive elements of navigational instruments
1. Materials of construction for aircraft and spacecraft(c) As a source of heat
2. Lofting "capsules"
1. Building materials (and the like) where slight warming effect is desired
2. Steam generation (similar to but less energetic than nuclear fuels)
3. Explosives
Brush, C.F.,
Physical Review, 31, p 1113(A), 32, p 633 abstract; Proc. Amer. Philosophical Soc. Vol.IX No. 2, 1921; Vol. LXVII No. 2, 1928; Vol LXVIII No. 1, 1929; Journal of Franklin Inst., Vol. 206, No. 1, 1928.Harrington, E.A.,
Nat'l Bu. of Standards, Proc. Amer. Philosophical Soc., Vol. LXXII, No. 5, 1933.
1 Hydrogen | ||
GROUP I | GROUP II | |
2 Helium | . . . . . . . . . . . . | 10 Neon |
3 Lithium | . . . . . . . . . . . . | 11 Sodium |
4 Beryllium | . . . . . . . . . . . . | 12 Magnesium |
5 Boron | . . . . . . . . . . . . | 13 Aluminum |
6 Carbon | . . . . . . . . . . . . | 14 Silicon |
7 Nitrogen | . . . . . . . . . . . . | 15 Phosphorus |
8 Oxygen | . . . . . . . . . . . . | 16 Sulfur |
9 Flourine | . . . . . . . . . . . . | 17 Chlorine |
GROUP III | GROUP IV | |
18 Argon | . . . . . . . . . . . . | 36 Krypton |
19 Potassium | . . . . . . . . . . . . | 37 Rubidium |
20 Calcium | . . . . . . . . . . . . | 38 Strontium |
21 Scandium | . . . . . . . . . . . . | 39 Yttrium |
22 Titanium | . . . . . . . . . . . . | 40 Zirconium |
23 Vanadium | . . . . . . . . . . . . | 41 Niobium |
24 Chromium | . . . . . . . . . . . . | 42 Molybdenum |
25 Manganese | . . . . . . . . . . . . | 43 Technicium |
26 Iron | . . . . . . . . . . . . | 44 Ruthenium |
27 Cobalt | . . . . . . . . . . . . | 45 Rodium |
28 Nickel | . . . . . . . . . . . . | 46 Palladium |
29 Copper | . . . . . . . . . . . . | 47 Silver |
30 Zinc | . . . . . . . . . . . . | 48 Cadmium |
31 Gallium | . . . . . . . . . . . . | 49 Indium |
32 Germanium | . . . . . . . . . . . . | 50 Tin |
33 Arsenic | . . . . . . . . . . . . | 51 Antimony |
34 Selenium | . . . . . . . . . . . . | 52 Tellurium |
35 Bromine | . . . . . . . . . . . . | 53 Iodine |
GROUP V | GROUP VI | |
54 Zenon | . . . . . . . . . . . . | 86 Radon |
55 Caesium | . . . . . . . . . . . . | 87 Francium |
56 Barium | . . . . . . . . . . . . | 88 Radium |
57 Lanthanum | . . . . . . . . . . . . | 89 Actinium |
58 Cerium | . . . . . . . . . . . . | 90 Thorium |
59 Praseodymium | . . . . . . . . . . . . | 91 Proactinium |
60 Neodymium | . . . . . . . . . . . . | 92 Uranium |
61 Promethium | . . . . . . . . . . . . | 93 Neptunium |
62 Samarium | . . . . . . . . . . . . | 94 Plutonium |
63 Europium | . . . . . . . . . . . . | 95 Americium |
64 Gadolinium | . . . . . . . . . . . . | 96 Curium |
65 Terbium | . . . . . . . . . . . . | 97 Berkelium |
66 Dysprosium | . . . . . . . . . . . . | 98 Californium |
67 Holmium | . . . . . . . . . . . . | 99 Einsteinium |
68 Erbium | . . . . . . . . . . . . | 100 Fermium |
69 Thulium | . . . . . . . . . . . . | 101 |
70 Ytterbium | . . . . . . . . . . . . | 102 |
71 Lutecium | . . . . . . . . . . . . | 103 |
72 Halfnium | . . . . . . . . . . . . | 104 |
73 Tantalum | . . . . . . . . . . . . | 105 |
74 Tungsten | . . . . . . . . . . . . | 106 |
75 Rhenium | . . . . . . . . . . . . | 107 |
76 Osmium | . . . . . . . . . . . . | 108 Newtonium |
77 Iridium | . . . . . . . . . . . . | 109 |
78 Platinum | . . . . . . . . . . . . | 110 |
79 Gold | . . . . . . . . . . . . | 111 |
80 Mercury | . . . . . . . . . . . . | 112 |
81 Thallium | . . . . . . . . . . . . | 113 |
82 Lead | . . . . . . . . . . . . | 114 |
83 Bismuth | . . . . . . . . . . . . | 115 |
84 Polonium | . . . . . . . . . . . . | 116 |
85 Astatine | . . . . . . . . . . . . | 117 |